When deciding which type of capacitor installation best meets your needs, you’ll have to weigh the advantages and disadvantages of each and consider several plant variables, including load type, load size, load constancy, load capacity, motor starting methods, and manner of utility billing. Load type If your plant has many large motors, 50 hp and above, it is usually economical to install one capacitor per motor and switch the capacitor and motor together. If your plant consists of many small motors, 1/2 to 25 hp, you can group the motors and install one capacitor at a central point in the distribution system. Often, the best solution for plants with large and small motors is to use both types of capacitor installations. Load size Facilities with large loads benefit from a combination of individual load, group load, and banks of fixed and automatically-switched capacitor units. A small facility, on the other hand, may require only one capacitor at the control board. Sometimes, only an isolated trouble spot requires power factor correction. This may be the case if your plant has welding machines, induction heaters, or DC drives. If a particular feeder serving a low power factor load is corrected, it may raise overall plant power factor enough that additional capacitors are unnecessary. Load constancy If your facility operates around the clock and has a constant load demand, fixed capacitors offer the greatest economy. If load is determined by eight-hour shifts five days a week, you’ll want more switched units to decrease capacitance during times of reduced load. Load capacity If your feeders or transformers are overloaded, or if you wish to add additional load to already loaded lines, correction must be applied at the load. If your facility has surplus amperage, you can install capacitor banks at main feeders. If load varies a great deal, automatic switching is probably the answer. Utility billing The severity of the local electric utility tariff for power factor will affect your payback and ROI. In many areas, an optimally designed power factor correction system will pay for itself in less than two years.
view more